PHYSICAL REVIEW E

VOLUME 53, NUMBER 4

APRIL 1996

Surface tension, hydrophobicity, and black holes: The entropic connection

David J. E. Callaway*
Department of Physics, The Rockefeller University, 1230 York Avenue, New York, New York 10021-6399
(Received 27 March 1995)

The geometric entropy arising from partitioning space in a fluid ““field theory” is shown to be linearly
proportional to the area of an excluded region. The coefficient of proportionality is related to surface tension by
a thermodynamic argument. Good agreement with experimental data is obtained for a number of fluids. The
calculation employs a density-matrix formalism developed previously for studying the origin of black hole
entropy. This approach may lead to a practical technique for the evaluation of thermodynamic quantities with
important entropic components. [S1063-651X(96)11304-0]
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I. PROLEGOMENA

The ground state of a quantum field theory can be de-
scribed by means of a density matrix. If the field degrees of
freedom inside a specified volume are traced over, the result
is a reduced density matrix p,, which depends only on the
degrees of freedom external to the excluded volume. Asso-
ciated with this reduced system is a geometric entropy,
Sout/k=—Tr(poudnpou), Which quantifies the information
lost by the partitioning of space. The geometric entropy is an
expression of the fact that p,, lacks the information con-
tained in correlations between the excluded interior volume
and the rest of the system.

This density-matrix formalism was recently utilized in an
attempt to provide a simple explanation for the classic result
[1] that the entropy of a black hole is linearly proportional to
its surface area. A spherical volume of a space containing a
free scalar field was excluded, and the resultant geometric
entropy was then determined. It was found [2,3] that the
geometric entropy of this black hole is, in fact, proportional
to the area of the excluded region, rather than to its volume.
This result seems initially to be rather mysterious, since en-
tropy (like free energy) is generally an extensive quantity.
However, in several important physical situations, major
contributions to the free energy of a system are, in fact, pro-
portional to its area. These area law contributions are prima-
rily responsible for liquid surface tension and for hydropho-
bic effects central to protein folding.

Although the density-matrix formalism was developed to
further our understanding of black holes, it does not directly
utilize either classical general relativity or quantum gravity.
It will be shown here that geometric entropy can be used to
exhibit a point of commonality between liquid surface ten-
sion and the aforementioned results, which are germane to
the study of black holes. The geometric entropy arising from
partitioning space in an empirical fluid field theory is calcu-
lated. Remarkably, the geometric entropy is found to be lin-
early proportional to the area of the excluded volume, as in
the above case [2,3] of a free scalar field. A thermodynamic
argument relates the coefficient of proportionality to liquid
surface tension. Good agreement with experiment is obtained
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for a number of liquids, suggesting that the density-matrix
formalism may lead to a simple and accurate way to evaluate
thermodynamic quantities with important entropic compo-
nents. Further anticipated developments are mentioned in the
closing remarks.

II. FIELD THEORY OF FLUIDS

The applicability of the density-matrix formalism to fluids
is founded upon the observation that a liquid at finite tem-
perature can be considered, for some purposes, as the
vacuum state of a field theory. This is a natural step to take,
since the structure and properties of a fluid at equilibrium
can be described by its molecular distributions [4,5]. These
distributions can, in turn, be used to define the Green’s func-
tions of a field theory, e.g.,

(p(r"))=po,

(p(r")p(r'+1))=pJ[1+h(r)]+pyd(r), (1)

where the right-hand sides of Egs. (1) are independent of
r’ for a homogeneous fluid.

These Green’s functions () are vacuum (i.e., ground state)
expectation values of fluid density fields {p(r)}, calculated
by means of a functional integral measure defined below.
The complete set of Green’s functions, which can be taken as
the definition of a field theory, can likewise be expressed in
terms of higher-order molecular distributions. The average
fluid number density p, and pair correlation function A(r)
are physically measurable, and can be extracted from experi-
mental data. The first two Green’s functions are thus known
quantities.

The idea of representing a fluid at finite temperature by
the vacuum state of a field theory is quite unusual, and there-
fore deserves careful explanation. Relations such as Egs. (1)
are frequently found in the classical treatments of fluids
[4,5]. However, in the classical treatment the averages () are
meant to be taken over canonical or grand canonical en-
sembles. Thus, although the definitions Egs. (1) are identical
to equations commonly found in textbooks, their interpreta-
tion is quite different.
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In the classical formalism, one usually begins by taking
averages over a canonical ensemble of N particles which
interact via a potential function V(r;,r,, ...,ry). Then the
canonical ensemble averages ()canonical Of densities and their
correlations are defined by relations like

<p(r)>canonical:Z;llf drlf dl’z' o

X f dl'NSXp( - ﬁV) pclassical( l') P

where

N
pclassical( l‘) = ; 5( r— ri) .

The integration is over the coordinates of all particles 1
through N, B=1/kT is the inverse temperature, and Zy is
the partition function. Grand-canonical averages can then be
calculated in the usual fashion to yield the familiar molecular
distributions.

One can thus generate an infinite set of grand-canonical
expectation values

(P(rl)P(rz) e p(rM)>gc

for all products of the quantity pgasica(T)- It is then that an
unusual step is taken. Each grand-canonical average ()gc is
identified with the corresponding Green’s function of a cer-
tain field theory. Because the complete set of grand-
canonical expectation values is known in principle, all of the
Green’s functions of this field theory are also known. The
full set of Green’s functions for a field theory can then be
taken as a definition of that field theory. One important point
must be emphasized, however: field-theoretic Green’s func-
tions are, by definition, expectation values of certain opera-
tors taken over the vacuum state. Thus, if the operators and
field-theoretic ground state are chosen so as to reproduce the
hierarchy of grand-canonical expectation values discussed
above, the ground state of a field theory provides a descrip-
tion of a fluid that is precisely equivalent to knowledge of the
complete set of molecular distributions.

In practice, of course, neither field theories nor grand-
canonical fluid models are generally solvable. Thus one must
resort to judicious approximation. As the present study is
primarily intended to illustrate the potential benefits of a dif-
ferent approach, the field theory used is a simple one: a gen-
eralized free field theory chosen to reproduce only the first
two Green’s functions Egs. (1).

The simplest field theory whose Green’s functions repro-
duce Egs. (1) has a ground-state density matrix proportional
to exp[ — 172(S{p}+S{p’'})], where S is quadratic in the
field variables {p(r)}:

psS{p}=%fdrf dr'[p(r)—po]W(r—r")[p(r')—pol,

()
W(r—r')=8(r—r')—poc(r—r')

and the function c(r—r’) remains to be determined. As an
additional convenience, the field variables {p(r)} are al-

lowed to range from negative to positive infinity. The expec-
tation values in Eqgs. (1) are calculated via the functional
integral

(0)=2"" [ ofplexsl - sto}10p.

EEf exp[ —S{p}1Dp. ©)

The function c(r) is then required via Eq. (1) to satisfy

h(r)=C(l‘)+Pof c(r=r")h(r")dr’, “4)

which is the well-known Ornstein-Zernike relation [6] link-
ing the direct correlation function c¢(r) with the pair correla-
tion i(r). The physical meaning of the function c(r) is thus
manifest. The success of the Ornstein-Zernike approach de-
rives in part from the short-ranged character of c(r), sug-
gesting that Eq. (2) is, indeed, a sensible starting point.

For this choice of ¢(r), Egs. (2) and (3) reproduce Egs.
(1). The constraints posed by Egs. (1) alone are, however,
insufficient to define a field theory uniquely. The generalized
free field theory implicit in Egs. (2) and (3) is only the sim-
plest solution of Egs. (1), and therefore provides an approxi-
mate description of a real liquid. In the theory defined here,
all higher-order correlations are calculable in terms of prod-
ucts of those in Egs. (1). The fluid theory defined by Egs. (2)
possesses the property that higher-order molecular distribu-
tions factorize, which is known [5] to be correct for large
separations. There is no barrier of principle to performing a
more elaborate calculation with a better model of a fluid;
however, the labor of calculation would be larger. (This point
is discussed in further detail below.) The integration over
unphysical negative values of the fluid density fields {p(r)}
is also permissible, for S{p} is positive definite and is
sharply peaked about p(r)=p,>0, provided that the Fourier
transform W(k) is positive (as it is for a fluid with finite
compressibility). Although negative, virtual values of the
density appear formally in the functional measure Eq. (3),
negative densities do not explicitly enter into the physically
observable molecular distributions, which are the Green'’s
functions of the theory. The standard [5] density functional
approach can be recovered by adding the usual potential term
Ju(r)p(r)dr to S{p}, and then evaluating = as a functional
of the average densities p(r)=(p(r)),. The density func-
tional Qf{p} of the bulk fluid is then simply
Q{po}—kTIn[E{p}], which is the effective action of the
field theory Eq. (3). For any S{p}, Q{p} calculated in this
fashion is convex [7] for a uniform system, and can have no
more than one minimum, so no Maxwell construction is
needed.

In what follows, the fluid density p, and pair correlation
function A(r) are taken from experimental results. No at-
tempt is made to derive either of these quantities from first
principles. One final simplification is therefore employed in
the sequel. Experimental techniques (such as x-ray scatter-
ing) typically measure only a spherical average h(|r|) of the
pair correlation. Although the above formalism can be easily
applied to test a nonspherically symmetric model, using real
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data requires the assumption that A(r)=~h(|r]) and
c(r)=c(|r|). This assumption is, however, commonplace

[12].

1. RELATING GEOMETRIC ENTROPY
TO SURFACE TENSION

The geometric entropy can be related to fluid surface ten-
sion by a simple argument. A well-known result of statistical
mechanics [8] states that the probability of observing a fluc-
tuation in a system at temperature 7 is given by
exp(— W/kT), where W is the reversible work required to
produce the fluctuated configuration through the application
of a constraint, and k is Boltzmann’s constant. Thus the re-
versible work required to produce a cavity of low density in
a fluid can be found from the probability that such a cavity
occurs via a fluctuation. Consider a subsystem of the fluid
contained within an imaginary sphere of radius R. The den-
sity matrix p;, for this subsystem can be constructed from
that given above for the full volume by integrating out the
field variables {p(r)} outside the sphere. This density matrix
is a weighted sum of the states internal to the sphere, given
that the exterior region is unobserved. It is shown below that,
ignoring volume work, the relative probability of the occur-
rence of any state which approximates a low-density cavity
is essentially exp(—S;,/k), where S;,/k=—Tr(p;,Inp;,) is
equal to the geometric entropy S, /k of the subsystem. The
macroscopic surface tension 7y for a fluid at a fixed tempera-
ture T is then the large R limit of 7'S,,(47R?) " !. Since the
Green’s functions used to specify the fluid field theory de-
pend implicitly upon the liquid temperature, geometric en-
tropy surface tension varies nonlinearly with temperature,
and thus contains contributions from both surface excess en-
tropy and enthalpy.

The useful correspondence between this surface tension
calculation and the aforementioned black hole entropy result
arises upon construction of the complementary density ma-
trix p .- In this complementary case, only the fields
{p(r)} inside the sphere are integrated out to yield py-
Then it can be shown [3] that S;,/k=S8../k
= —Tr(p qulNpou), Where S,/k is the geometric entropy of
the subsystem. The density-matrix calculations [2,3] relevant
to black hole entropy involve the development of techniques
for calculating S, ; by the reasoning given here, they are
also useful for extracting liquid surface tension.

The density-matrix calculation proceeds as follows. When
the field variables {p(r)} outside the sphere are integrated
out, the result [2] is a reduced density matrix

pinla.q'}=[det(M/m)]"exp[ — 3 (qgMq+q'Mq')
—3(qg—q")N(g—q")], %

where {g(r)=[p(r)— py]} inside the sphere. The matrix M
is the inverse of W/(2pg), taken over this interior domain,
while N=W/(2py)— M. Since this domain is finite, M and
N are to be considered sums over discrete values of wave
number.

The reduced density matrix p;, is next expressed in a basis
{x} in which the matrix Ag=M ~>NM ~ 12 is diagonal, with
eigenvalues A. The coordinates {x} are normalized by
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x>=gMgq, so that the determinant prefactor in Eq. (5) is
eliminated. Then [2,3] for each mode [with eigenvalue
AN=4£(1-6) 7% 0sé<1]:

Pinaix,x'}= go PaV ()W, (x"), (6)

W (x)=(2"n! X Jar/a) " V2H, (\ax)exp( — ax?/2),
(7)

where H,(z) is a Hermite polynomial, a=(1+§)/(1—§&),
and p,=(1—§)§&". The reduced density matrix is a product
of those for each mode \:

puntx t =11 pionfxx’}. ®)

Each mode p;, , behaves like a thermal density matrix for a
harmonic oscillator, specified by a frequency « and effective
temperature 7 4= a/In(1/§).

The probability that a mode N\ of the spherical subsystem
is found in state n is thus p, . Associated with this probabil-
ity distribution are two useful quantities. These are n, which
is the average state number,

ﬁ:g,o np,=§&(1—§), )

and S;,, the geometric entropy, in terms of which the density
of states is exp(— S;,/k):

©

S lk=— ZO plop,=—In(1—§&—n InE& (10)

The probability of finding the mode in any state n=N is
Pany(N)=€N. Thus, for n=n,

PnsSPi=exp(— Sin/k)<pany(n). (11)

For the systems of interest here, £ is generally quite small, so
the second inequality is nearly an equality:

exp(*Sin/k)Epany(ﬁ)’ (12)

In the classical methods of calculation, the probability
that the system attains a given density is calculated. The
course taken here is, however, conceptually quite different.
The quantity of interest here is the relative probability to find
the subsystem in certain states, those whose characteristic
density is relatively low. For a given state, there is a finite
probability that any value of the density will be attained. The
expectation value of an operator can, however, be deter-
mined for such a state. Thus the expectation value of
x2~(Qp}—Q{p})/kT in state n is given by (n+1)/a.
The probability distribution [¥,(x)]? for n>0 typically is
maximized when x=xp.u==*[(2n+ 1)/a]'?, correspond-
ing to values of the density that are above and below the bulk
value. A state whose density is expected to differ from the
bulk value by at least the inverse volume of the subsystem
(so that at least one molecule is absent) must therefore have
n=n. By Eq. (12), the probability of finding the system in
such a state is well approximated by exp(—S;,/k).
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Where, then, are the approximations made, and how does
one deal with more complex situations? Let us review the
logic of the calculation. One begins with a field theory in its
ground state. The question of interest is the probability that a
given fluctuation occurs inside an imaginary sphere of radius
R, regardless of what occurs outside that imaginary sphere.
Thus the degrees of freedom outside the imaginary sphere
are integrated out. What remains is a field theory that is
defined in terms of variables internal to the sphere. This field
theory gives the relative probability of a given internal con-
figuration, assuming that the region external to the sphere is
unobserved. In this regard, there is a point of contrast be-
tween the fluid calculation and the black hole entropy result.
In the latter case, degrees of freedom inside the black hole
are considered unobservable on fundamental grounds, rather
than simply being unobserved. Nevertheless, the correct for-
mal procedure is the same in the two cases—the unobserved
variables are integrated out.

It is important to realize that, at least in principle, no
approximations need to be made to reach this stage of the
calculation. Instead of the quadratic form given in Eq. (2),
one could just as well begin with an arbitrarily complex den-
sity functional S{p}, corresponding to an arbitrary set of
molecular distributions. The virtue of the simple form Eq. (2)
is that it allows the calculation of the reduced density matrix
to be made explicit. Nevertheless, by perturbative or numeri-
cal means, it is presumably possible to evaluate the density
matrix for the system inside the imaginary sphere for an
arbitrary density functional S{p}. The result for each eigen-
mode of the density matrix will be formally identical to Eq.
(6), although the eigenfunctions ¥, will no longer be the
explicit forms of Eq. (7). Thus the simple generalized free-
field theory implied by Eq. (2) is a calculational conve-
nience, rather than an integral part of the formalism. More-
over, as is seen below, this simple functional form suffices to
reproduce not only the necessary area-law form of the geo-
metric entropy (implying a constant surface tension), but
gives reasonable answers for the surface tension as well.

The next step in the analysis is the calculation of the
probability to find the interior region in states whose ex-
pected density is less than the bulk value. Another point must
be made clear here. Although the surrounding imaginary
sphere represents a sharp boundary, the interface itself is not
constrained to be as sharp. It is only necessary that the
boundary of the imaginary sphere be placed outside the in-
terface region. Thus one could imagine making the imagi-
nary sphere extremely large, and asking the probability to
observe states of density only slightly less than the bulk
value. For a sufficiently large sphere and small deviation
from bulk density, the quadratic approximation to the density
functional S{p} must therefore be valid. For a small sphere,
however, there will be an error in estimating the size of the
bubble of low density contained within the sphere. The size
of the interface region should be dictated by molecular di-
mensions. (In other words, the existence of an interface in a
noncritical system should not perturb the system strongly
more than a few molecular diameters away from that inter-
face.) Thus the ratio of the interface width to the sphere size
should vanish for a large enough sphere (which is, of course,
the limit of interest for macroscopic surface tension). There-
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fore, for a large enough sphere, the area of the low-density
bubble is asymptotically equal to the area of the surrounding
imaginary sphere.

If a different problem is formulated, such as the calcula-
tion of the boundary free energy associated with a bulk liquid
in contact with a hard wall, constraints on the selected con-
figurations must be introduced. For the boundary free energy
problem, the density must be zero at the wall. Thus, rather
than asking [as in Eq. (12)] the probability p,,,(N) to find a
mode in any state greater than N, one asks the probability to
find states with a node in the proper location. A more de-
tailed analysis would be needed in order to select the proper
states to include in this sum. However, in any case, there
must be factors of p, included in the calculation, and thus
there should also always be a connection to the geometric
entropy. This relation should persist even if a better model of
a fluid than Eq. (2) is used.

At least for some problems, it is possible to improve upon
the results given by the approximate quadratic density func-
tional S{p} by means of a simple perturbative analysis, al-
though in general such improvements likely require numeri-
cal simulation. One example of how a perturbative study
might proceed is as follows. Consider a more elaborate
model of a fluid constructed by replacing the probability
functional exp[ —S{p}] defined by Eq. (2) with a functional

exp[ - Snew{p}] = exp[ - S{p}] +e exp[ - Sgas{p}]s

where pgS.{p}= 1/2f[p(r)]*dr. Here € is a small number
that gives the relative probability of the bulk fluid to be in
the gas phase. The action S,..{p} has two minima, essen-
tially at zero density p=0 and at the bulk density p=p,,
and thus includes a crude characterization of the gas phase of
the fluid. One can then calculate, using ordinary quantum-
mechanical perturbation theory, the change in the eigenval-
ues p,, of the density matrix p;, due to the additional term in
exp[ —S{p}]. The gas-phase contributions to the geometric
entropy — 2p,lnp, can then be expanded in a series in the
small number €, allowing geometric entropy to be deter-
mined in a controlled fashion.

It is therefore clear that no barrier of principle exists in
applying the techniques developed here to fluid models of
arbitrary complexity. The present formalism is thus not sub-
ject to the easy criticism [9] applied to early integral-
equation treatments of surface tension. In these early calcu-
lations, the direct correlation function appropriate to a bulk
fluid was employed essentially to estimate the relative prob-
ability of various interfacial configurations, whose local den-
sity was necessarily far from its bulk value. These calcula-
tions were thus highly sensitive to the tails of the probability
distribution employed, while the bulk direct correlation only
provides information about the distribution near its peak. The
present argument obviates this difficulty by counting states,
since the specific form of the density matrix for densities far
from the bulk value contributes little to S;,/k
=—Tr(p jplnp;,). Thus, by calculating the geometric en-
tropy, one is determining the relative probability of the sys-
tem to be in a state whose typical density is outside the
region where the probability distribution is maximized. Since
both the distribution near its peak and the overall normaliza-
tion of the probability distribution are known, this calcula-
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tion can be done relatively accurately. Moreover, as the den-
sity matrix p;, is constructed by integrating over all fields
{p(r)} external to the sphere, correlations of arbitrarily long
wavelength are included, as they should be [5,9]. Neverthe-
less, as discussed above, if the effects of complex boundary
conditions are to be accounted for in a satisfactory way, fur-
ther constraints on the available states must be included.

IV. EVALUATION OF SURFACE TENSION

The calculation of S, is easily performed using Eq. (34)
of Ref. [2]. The asymmetric matrix A=M ~'N has the same
eigenvalues as the symmetric matrix Ag=M ~Y2NM ~'2_ but
is easier to construct numerically. Therefore, the eigenvalues
of A are computed. By making an expansion in spherical
harmonics, the problem reduces to finding the eigenvalues
\; of the matrix

R -~ ~
A,(r,r")=—f0 T[1W](r, kYT IWI(r ") r'2dr',
(13)
with respect to the measure (r")2dr” over the interval
{r,r">R}, where

Tl[vi/](r',r")s(r'r")—I/Zfo kdk W(k)J 4 (12 (kr")

XJ 12 (kr”), (14)

and similarly for T,[1/W]. Here W(k) is the Fourier trans-
form of W(r), while J;, (15,(z) is a Bessel function. Then

(2]

Sout/k= 2, (21+1){In(5)}?)
=0
F(IHNY 2 W[ (1N D202 (15)

The sum in Eq. (15) is taken over all eigenvalues \; for
each /. The function poh(k)=1/W(k)—1 is taken directly

50 60

from experiment, obviating the need for an independent de-
termination of the density py. As k increases, h(k) goes to
zero. Hence the substitutions

1/W(k)— poh(k)=w"1(k), (16)
W(k)— — poh(k)/[ 1+ poh(k)]="(k) (17)

were made in Eqgs. (13) and (14) to ensure the convergence
of the integrals Eq. (14). Since T, [1](r,r")
=(r)"%28(r—r'), subtracting one from W(k) [or 1/W(k)]
leaves A (r,r") unaffected for {r,7">R}, and so the sum
Eq. (15) is unchanged by this replacement. In contrast to the
case [2,3] of a massless scalar field theory [where
W(k)=k], no ultraviolet cutoff is needed here, since ﬂ(k)
vanishes for large k. Data are generally presented as a set of
N values of poh(k) at uniformly spaced intervals of
k=n(Ak), so the integrals Eq. (14) can be viewed as finite
trapezoid-rule sums. The eigenvectors of A,(r,r”) are linear
combinations of

u(k,r")= ®(r"——R)(r")"1/2J,+(1/2)(kr”) (18)

for values of k contained within the data set, reducing the
problem to a numerical diagonalization of the N X N matrix

N
A(m,n)= —m[v&"l(mAk)]; I(m,i)[Ww(iAk)]

X[ain—ill(i’n)] (19)

for each /. The required indefinite integrals of Bessel func-
tions

RAK
Il(m,n)Efo Jivamy(ms)Jiip)(ns)s ds  (20)

can be performed analytically. The computational procedure
was checked against the test case k(r)= —exp(—mr), for
which the integrals Eq. (14) are known exactly.



TABLE 1. Surface tension vy (dyn/cm).

DM Experiment SPT
Sodium 164 (373 K) 206 (371 K) 91 (371 K)
Potassium 93 (338 K) 88 (337 K) 56 (337 K)
Water 82 (298 K) 72 (298 K) 52 (303 K)
Chlorine 31 (298 K) 18 (293 K) 20 (293 K)
Methane 21 (96 K) 16 (95 K)
Nitrogen 6.4 (77 K) 9 (77 K) 9 (77 K)

The geometric entropy S.,(R) for water at 25 °C was
calculated by applying the above procedure to structure func-
tion data [10]. The summand of Eq. (15) vanishes exponen-
tially with /, albeit with a large decay length (~10). By
including all values of /<75, S, (R) can be accurately cal-
culated up to R~7.5 A. Figure 1 displays the result. Except
for very small R values, S,,(R) is linearly proportional to
R?, as it is for a cutoff scalar field theory [2,3]. Asymptoti-
cally, S, (R)~2.50R?, yielding a surface tension of 82
dyn/cm, which is 14% larger than the experimental number
72 dyn/cm [11]. For comparison, scaled particle theory using
the usual hard-sphere radius of 2.7 A predicts [13] 52
dyn/cm at 303 K. A detailed molecular dynamics simulation
[14] of water at 305 K yields 67 dyn/cm, to be compared
with the 71 dyn/cm obtained experimentally at this tempera-
ture. These simulation results can be fitted by scaled particle
theory, if the significantly larger value of 2.875 A is chosen
for the hard-sphere radius of water. [As there are several
implicit scales present, dimensional analysis cannot be used
to obviate the density-matrix entropy calculation. Scaled par-
ticle theory, where surface tension is given in terms of the
hard-sphere radius a by the form y=kT/a’f(pya), is prob-
ably the simplest viable alternative. Indeed, the only external
input to the density-matrix calculation, poﬁ(k), is dimen-
sionless.]

The surface tension of a number of other liquids was also
calculated using their measured structure functions [15,16].
The density-matrix (DM) results are given in Table I, along
with experimental data [11,13,17] and available estimates
[13] from scaled particle theory (SPT). The agreement be-
tween the density-matrix results and experimental data over
a wide temperature range is respectable, especially since the
only input to the calculation is the (measured) structure fac-
tor. By contrast, scaled particle theory is quite sensitive to
the value chosen for the hard-sphere radius. This parameter
is not measurable directly, and is usually determined by fit-
ting compressibility data. The closest agreement between ex-
periment and the density-matrix calculation occurs for so-
dium, potassium, and water, whose structure functions are
known with the best precision.
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V. CONCLUSIONS

It is worth emphasizing the remarkable fact that the geo-
metric entropy was found to be essentially a linear function
of the area in every case considered here, in addition to the
free scalar field theory considered previously by others [2,3].
On very general grounds [3], the eigenvalues of the reduced
density matrix (and thus the geometric entropy) depend upon
the area of the boundary surface, and not upon the volume of
the excluded region. However, it is not clear why the geo-
metric entropy should be linearly proportional to this area,
especially for situations whose physical basis and math-
ematical structure are substantially different. (Thus, for ex-
ample, the calculation of geometric entropy in the black hole
case required the introduction of an ultraviolet cutoff; here,
since the structure factor of a fluid vanishes at large wave
number, no cutoff is needed.) Moreover, the linear depen-
dence of geometric entropy on area provides an additional
point of support for the present mode of calculation. It not
only gives the correct area-law form for this contribution to
the free energy, but gives reasonable values for the constant
of proportionality (which is the surface tension).

As a rule, few ideas relevant to quantum gravity have
practical applications. One exception was given here. By de-
termining the geometric entropy of a black hole in a fluid
field theory, the liquid surface tension can be evaluated in an
interesting way. These calculations are essentially exact re-
sults for a field theory that is an approximation to a real
liquid. The procedure is therefore automatically self-
consistent, which may partly account for its plausible accu-
racy. Possible extensions of the formalism include an extrac-
tion of the hydrophobic potential of mean force, which is a
major ingredient of protein folding models [18]. This may be
determined by excluding two regions of fluid and calculating
the resultant geometric entropy as a function of the distance
between them. The density-matrix method is sensitive to the
form of the structure factor over its entire range. Thus the
method may provide a useful test of approximate theories.
The major virtue of the density-matrix method is its relative
simplicity—molecular simulations of entropic quantities are
difficult and, hence, rare. Further calculations are in progress.

Note added in proof. Recently, we have become aware of
work [19] in which mathematically similar ideas are ex-
plored.
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